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In a recent article D. Ruelle [in Lecture Notes in Physics, No. 80 (Springer, 
Berlin, 1978)] has conjectured that for the H~non attractor its measure theoretic 
entropy should be equal to its characteristic exponent. This result is known to be 
true for systems which satisfy Smale's Axiom A. In this article we report the 
results of our computations which suggest that Ruelle's conjecture may be true 
for the H~non attractor. Further, in our study we are confronted'with funda- 
mental questions which suggest that certain existence theorems from ergodic 
theory are not sufficient from a computational point of view. 
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1. I N T R O D U C T I O N  

Two quantities which provide evidence for r andom behavior  in a given 
dynamical  system are the measure theoretic entropy and the characteristic 
exponents.  If  there is nontrivial recurrent behavior  for a dynamical  system, 
then one is likely to find that there is an exponential  rate of separation of 
neighboring trajectories (therefore at least one positive characteristic expo- 
nent) and  also positive entropy (see Section 2 for definition of entropy). 

For  more than a decade it has been known that  there is a relationship 
between the entropy and characteristic exponents;  precisely, it was known 
that in general the sum of the positive characteristic exponents was greater 
than or equal to the measure theoretic entropy. However,  it has also been 
established that for systems which satisfy Smale's Axiom A (2) the measure 
theoretic ent ropy and  sum of the positive characteristic exponents are 
equal. In  Ref. I D. Ruelle has posed the question of whether these two 
quantities will be equal in a broader  context than that  allowed by systems 
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considered in Ref. 2 (for the exact formulation of Ruelle's question, we 
refer the reader to Ref. 1). 

More recently I. Shimada (3) has reported that for the Lorenz system of 
three coupled nonlinear ordinary differential equations the characteristic 
exponent and measure theoretic entropy are in good numerical agreement 
for the parameter values which he considers, which differ from those 
considered in Ref. 4. The Lorenz system does not satisfy Axiom A, hence 
the work of Shimada gives some evidence that Ruelle's question will have 
an affirmative answer for a wider class of systems than those considered in 
Ref. 2. 

In Ref. 5 M. H6non, motivated by a careful numerical study of the 
Lorenz system by Y. Pomeau, introduced a transformation of the plane 
into itself which seems to admit an attractor set which locally has the 
structure of the product of a Cantor set with an interval. H6non's transfor- 
mation has received much attention recently, both numerical (6-8~ and 
analytic (9'1~ and also does not seem to satisfy Axiom A. We remark that in 
Ref. 10 it has been proven that there is a transverse crossing of the stable 
and unstable manifolds of the fixed point for H6non's parameter values 
and hence an explanation of the graphs in Ref. 5. 

In Ref. 1 Ruelle also conjectures that the measure theoretic entropy of 
the H6non attractor should be approximately 0.4. This conjecture is based 
in part on the question raised above and results of S. Feit. In Ref. 6 Felt 
has computed the characteristic exponent for the H6non attractor and 
found that it has a value of approximately 0.42 to two decimal places. 

In this article we report the results of our numerical experiments which 
were an attempt to verify the conjecture of Ruelle for the case of the H6non 
attractor. In Section 2 we recall the definition of measure theoretic entropy. 

In Section 3 we present the results of our numerical experiments for 
two well-known examples, and in Section 4 we report our findings for 
H6non's transformation when a = 1.40, b = 0.3. 

In Section 4.2 we mention results for other parameter values than 
those studied by H6non. Finally, in Section 5, we discuss our findings and 
their possible significance. 

2. ENTROPY 

Let (X, 6g,/~) be a probability space. We define a partition of (X, ~, ~) 
to be any disjoint collection of elements of ~ whose union is X. Let fl be a 
finite partition of X, fi = ( i l l ,  f12 . . . . .  ilk}, and suppose that T:  X-->X. 
Given any x ~ X it is possible to identify x with a sequence of symbols (t)) 
where/j  = m if TJx ~ ~m and m E ( 1,2 . . . . .  k }. The action of T is to shift 
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(/j) ~ (/j+ 1)- Of course if we choose a different partition, fl, the point x ~ X 
remains unchanged but the sequence of symbols which represent x could 
change. 

The measure theoretic entropy of fl is defined to be 

H(fl) = ~ bt(Bi)log [L(Bi) (2.1) 
i 

while the entropy of T with respect to/3 is defined to be 

H(T, t 9 )=  lim 1H(/3 V Tfl V . . .  V Tin-I)~3) (2.2) 
n ~  n 

where, if/3 and a are two finite partitions,/3 V a = {Bj N Ai} and Bj and A i 
are chosen from the elements of/3 and a, respectively. In what follows we 
shall refer to the quantity computed in (2.2) as the partition entropy for the 
partition/3 and transformation T. 

The entropy of T, for the given measure/,,  is then 

hl,(T ) = sup h, ( T, /3 ) (2.3) 

Two comments are necessary prior to reporting the results of our 
experiments. Formula (2.2) is essentially the one used in Ref. 1. An 
unfortunate fact about this formula is that it converges to the partition 
entropy very slowly. In order to speed up the convergence we have used the 
following formula, which also converges to the partition entropy provided 
the limit in (2.2) exists: 

li_m {H(+o T ' / 3 ) - H ( g T i / 3 ) ) = l i m H ( / 3 ] g T i / 3  ) (2.4) 

where H(a  ]/3) = H(a \ / / 3 )  - H(/3) is the conditional entropy of a given 
/3. We call the quantity (2.4) F~, where k refers to the number of elements 
in the partition and n is given in (2.4). In order to compute the entropy of T 
we should compute the supremum over all partitions. This is not possible. 
Hence we note that if a is a generator for T and/3 is any partition, then 
h(T,a) > h(T,/3). And in particular h(T)= h(T,a) for any generator a. 
This fact is the Kolmogorov-Sinai theorem and we shall make use of it by 
looking for a partition that is in some sense close to a generator. In general 
there is no algorithm for finding a generating partition. Therefore we try to 
find a partition which maximizes the entropy among those partitions we 
consider. Finally, note that (2.2) and (2.4) decrease to the partition entropy 
and the entropy of a refined partition is greater than the entropy of the 
original one. For a more complete introduction to measure theoretic 
entropy we refer the reader to Ref. 13 and the references cited there. 
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3. COMPUTATIONAL CONSIDERATIONS AND TWO EXAMPLES 

Let us begin by giving a description of our underlying computational 
strategy for computing the measure theoretic entropy for a transformation 
T. The idea behind the strategy is simple: compute the frequency of 
occurrence of configurations having various lengths, then use formula (2.2). 
More explicitly, first partition the domain of the transformation into some 
number of disjoint pieces; then associate with each member of the partition 
a symbol, e.g., an integer between 1 and n inclusive, if there are n elements 
in the partition. In this way it is possible to represent symbolically the orbit 
of a point by noting in which element of the partition it lies, at each 
iteration of the transformation. 

By a configuration of  length k we shall mean a finite segment of the 
total orbit consisting of k symbols. In order to compute the partition 
entropy for T, formula (2.2) can then be used. There are three empirical 
considerations which must be kept in mind throughout the remainder of 
this article: (1) in general, it will be difficult to know a priori how many 
times a transformation must be iterated before the asymptotic frequency of 
a given configuration is achieved; (2) it is not possible to consider configu- 
rations of arbitrary length, and hence the limiting operations in (2.2), for 
example, cannot be performed; and (3) a question which is fundamental to 
both (1) and (2): How is the domain of T to be subdivided? 

In view of the question and remarks of the last paragraph it will be 
useful to consider two illustrative examples, the first from an analytic point 
of view and the second from a computational point of view. 

The first mapping we will consider is a transformation which carries 
the unit interval into itself and is given by 

{ 2 x ,  0 x < � 8 9  

g,(x)= 2(1-x), (3.1) 

This is the so-called "rooftop" map. The second, equally well known, map 
of the interval is 

f ( x )  = 4x(1 - x) (3.2) 

These two mappings are both orbit and measure theoretically conju- 
gate with measure-theoretic entropy log 2. A generating partition for both 
examples is the two-element partition given by ([0, �89 [ �89 1 ]). 

Since question (3) above is fundamental to all subsequent consider- 
ations, let us consider it and its relationship to (3.1). Suppose we divide the 
domain of this map into three subintervals having equal length. The 
partition is then given by a = ([0, 1 ~ r I 2~ r2 x,,~x,3,,Lx, 1]). If we now label the sets 
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with the symbols 1,2,3, then g has the same dynamics as a three state 
Markov shift whose initial vector is r i  i i~ and whose transition matrix is 

\ 3 ~ 3 , 3 /  

[1 0 
0 0 1 

0 

(to see this it is sufficient to see what g does to the elements of ~). 
Now, given the initial vector and transition probabilities of a Markov 

shift it is possible to compute its entropy. In this case we find the number 
~log2. (14) If we now divide the unit interval into k (odd) subintervals all 
having equal length, then the dynamics of g for this partition is equivalent 
to a k-state Markov shift whose entropy is [(k - 1)/k]log2. But, in order to 
arrive at the measure-theoretic entropy of g we must take the supremum 
over all partitions and in particular over all equally spaced partitions; when 
we do this, not surprisingly, log 2 is achieved. 

Recall that any partition into an even number of subintervals is a 
refinement of the generating partition 1 1 {[0, ~), [3, 1]} and is therefore itself a 
generating partition. Hence the partition entropy must be log 2. This can be 
checked by a straightforward computation. 

We may summarize our findings for example (3.1) as follows: 

(a) If we choose the wrong partition, the value we compute for the 
partition entropy will be less than the true entropy of the transfor- 
mation. 

(b) Refining a partition increases the corresponding partition entropy. 

As we noted in the introduction to this article, I. Shimada (3) has found 
good agreement between the characteristic exponent and measure-theoretic 
entropy for the Lorenz system of equations by using a partition consisting 
of two elements. The choice of the partition used by Shimada was no doubt 
guided by the symmetries in the Lorenz equations. The comments made 
about the rooftop map and Shimada's computation suggest the following 
numerical experiment: Choose a dynamical system whose measure- 
theoretic entropy is known. Then using formula (2.2), compute the partition 
entropy when obvious symmetries are "overlooked." That is, what can we 
expect from a "bad" partition? 

As one of the few examples of a dynamical system whose measure- 
theoretic entropy is known we consider (3.2). In computing the partition 
entropy we have used formula (2.2). For this examplef  was iterated 500,000 
times and configurations of maximum length 8 were examined. 

In Fig. I, the results of our entropy computation for the partition 
consisting of two equal pieces is presented. Here it can be seen that there is 
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Graph of the entropy of 4x( l  - x) as a function of length for a two-element partition. 

rapid convergence to the entropy of f when configurations having lengths 
between three and eight symbols are considered. Table I contains the data 
used to generate Fig. 1. 

In Fig. 2 we have used a partition which contains three elements 
having equal length (the partition a considered before). Table II contains 
the data used to generate this graph. Notice that these data are not 
asymptotic to log2. Indeed, the fact that the configuration entropy is 
strictly less than log2 when configurations of length 8 are considered 
indicates that the partition entropy of f for this partition will be strictly less 
than its measure-theoretic entropy. There was no appreciable change in the 
results when f was iterated 1,000,000 times. 

The above example indicates that the symmetries of a dynamical 
system can be a powerful aid in choosing a partition and achieving optimal 
convergence to the measure-theoretic entropy; while when the partition is 

T a b l e  I. T w o - E l e m e n t  P a r t i t i o n  

Length of Number  of 
configuration Entropy configuration 

3 0.6931 8 
4 0.6931 16 
5 0.6931 32 
6 0.6931 64 
7 0.6931 128 
8 0.6931 256 
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Graph of the entropy of 4 x ( l -  x) as a function of configuration length for a 
three-element partition. 

arbitrary, convergence to a limiting value is slower (there is no way to 
choose a priori a generating partition). 

4. THE HI'NON TRANSFORMATION 

The H~non transformation is an invertible mapping of the plane into 
itself whose definition is given by 

T(x ,  y )  = (1 + y - ax2,bx) 

In Ref. 5 M. H6non considers the behavior of iterates of T when 
a = 1.40 and b = 0.3. In what follows we shall initially restrict our attention 
to these parameter  values. For properties of T which have been discovered 
since Ref. 5 we refer to Refs. 6-10. 

Table II. Three-Element Partition 

Length of Number of 
configuration Entropy configuration 

3 0.8243 14 
4 0.76717 26 
5 0.7323 48 
6 0.70651 88 
7 0.6880 161 
8 0.6742 293 
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The goal of this article is to compare the characteristic exponent and 
measure theoretic entropy of the H6non attractor. Computer experiments 
seem to indicate that there is an invariant measure associated with the 
H6non attractor. This invariant measure has characteristic exponents and 
an entropy associated with it. We are interested in determining if these 
quantities are related in the manner proposed in Ref. 1 by Ruelle. 

As was remarked earlier, given a dynamical system having no apparent 
symmetries it is not at all obvious how a good partition is to be chosen. 
What was done in the present case was to choose a partition, a, of the 
x-range of T which is contained in the interval [ -  1.3, 1.3], i.e,, partitions 
into vertical strips. The vertical partitions considered consisted of subdivi- 
sions of the x-range into two, three, five, and seven subintervals of equal 
length. We found that of all of the above partitions, the best results were 
achieved when the division into two equal subintervals was considered. 
Hence, the specific partition considered in many of the computations 
reported on here is the vertical partition a = {[-1.3,0), [0, 1.3]} and its 
refinements which are obtained by dividing the x-range into four and eight 
subintervals having equal length. The "odd" partitions were not considered 
further. ~ 

A typical numerical experiment was performed as follows: Given a, 
symbolically represent the orbit of a given point on the attractor as a 
sequence of O's and l's. In order to compute the partition entropy of T 
given a we must tabulate the frequency of occurrence of configurations 
having lengths tending to infinity. What was done in practice was to 
consider configurations of maximum length 19, 16, and 15 for the two-, 
four-, and eight-element partitions, respectively, and to iterate T 1,000,000 
times starting from a point on the attractor. Finally we recall the notation 
F k which we use to denote the number computed from formula (2.4) when 
configurations of length n are considered and k elements are in the given 
partition. 

4.1. Numerical Results 

In Fig. 3 we have graphed F~ for the two-, four-, and eight-element 
partitions. Tables III, IV, and V were used to generate this figure. From the 
figure we can conclude that for configurations of lengths 19, 16, and 15 the 
partition entropy is approximately 0.40, which is within 5% of the charac- 
teristic exponent (value of 0.42) but is less than the characteristic exponent. 
It is straightforward to prove that F2 is a decreasing function of n, the 
configuration length. Hence for this partition we conclude that the charac- 
teristic exponent is strictly less than the measure theoretic entropy. 

In Table VI we have tabulated the behavior of F(9 for various different 
vertical partitions. From the table it is clear that for all two-element vertical 
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Fig. 3. Entropy of the H~non attractor as a function of configuration length for a two-, four-, 
and eight-element partition, a = 1.40. 

partitions considered the characteristic exponent strictly dominates the 
partition entropy. We call special attention to the last entry in the table. It 
was found that when the x-range was divided in this way the frequency of 
being in either the left or right element of the division was about equal. 
Note that F~9 = 0.33650, which is well below the characteristic exponent. 

Table III. 
Two-Element PMtNion 

i ii 

3 0.49522 
4 0.48886 
5 0.48558 
6 0.47051 
7 0.45569 
8 0.44111 
9 0.43691 

10 0.42794 
11 0.42188 
12 0.41954 
13 0.41778 
14 0.41685 
15 0.41509 
16 0.41262 
17 0.41054 
18 0.40888 
19 0.40672 

i i  



Table IV. 
Four-Element Partition 

3 0.55578 
4 0.53221 
5 0.49499 
6 0.46658 
7 0.44610 
8 0.43849 
9 0.43473 

10 0.42542 
11 0.42196 
12 0.41945 
13 0.41471 
14 0.41351 
15 0.41061 
16 0.40874 

Table V. 
Eight-Element 

PartlUon 

3 0.58591 
4 0.52310 
5 0.47268 
6 0.44980 
7 0.43970 
8 0.43305 
9 0.42287 

10 0.41948 
11 0.41612 
12 0.41300 
13 0.40936 
14 0.40659 
15 0.40353 

i 

Table VI. Two-Element Partition 
i 

C~ 
[ - 1.3, - 0.2), [ - 0.2, 1.3] 0.37472 
[ -  1.3, -0 .15) ,  [ - 0 . 1 5 ,  1 . 3 1  0.38575 
[ - 1.3, - 0.05), [ - 0.05, 1.3] 0.39055 
[ - 1.3, 0), [0, 1.3] 0.40672 
[ - 1.3, 0.05), [0.05, 1.3] 0.40832 
[ - 1.3, 0.075), [0.075, 1.3] 0.38307 
[ -  1.3, 0.2), [0.2, 1.3] 0.35134 
[ - 1.3, 0.3), [0.3, 1.3] 0.32355 
[ -  1.3, 0.419), [0.419, 1.3] 0.33650 

I 
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This demonstrates that the best possible partition is not necessarily a 

division into two equally probable pieces. 

4.2. Other Parameter Values 

We report here some results for other parameter values and confine 
Our attention to the two-element partition of the previous section. 

In the Introduction we noted that Misiurewicz and Szewc have shown 
that the stable and unstable manifolds of the fixed point near the Hrnon  
attractor (a = 1.40, b - 0.3) has a transverse crossing. The first a value for 
which this occurs is approximately a = 1.1538. (8~ The characteristic expo- 
nent for this parameter value is C.E. = 0.283. We have found that for this 
parameter value F129 = 0.257 for the partition entropy given a. Another 
parameter value of interest is a = 1.42690, which is the value above which 
the unstable manifold of the fixed point lying in a neighborhood of the 
Hrnon  attractor tends to infinity. This parameter value "corresponds" to 
the value 4 for the mapping f ( x )  = b x ( l  - x )  of the interval [0, 1] to itself. 

In this case the C.E.= 0.424 while Fff8 = 0.412. Here the partition 
entropy is within 3% of the characteristic exponent for a but is once again 
strictly less than the characteristic exponent. We have not, however, made 
any attempt to find the best possible two-element partition for these 
parameter values. 

5. D ISCUSSION 

In this article we have reported on our attempts to verify the conjec- 
ture of Ruelle that the characteristic exponent and measure-theoretic en- 
tropy for the Hrnon  attractor should be equal. One of the principal 
problems encountered in this investigation was that of choosing a partition. 
In the case of the Hrnon  attractor, which has no apparent symmetries, we 
have considered only vertical partitions. Our choice was based on the 
hypothesis that elements in such a partition would mix sufficiently rapidly 
to achieve the desired limit. (7) 

The numerical results of Section 4 indicate that two-element vertical 
partitions will give a value of F f  which is strictly less than the characteristic 
exponent. A surprising result of our computations is that the partition, a, 

we considered seems to account for most of the entropy in the dynamical 
system. A somewhat more interesting fact is that one of the very worst 
partitions is the two-element vertical partition which makes being in either 
element equally probable. 

In Section 3 we noted that when we chose a good partition there was 
almost immediate convergence to the entropy of the transformation, while 
when we chose the wrong partition the number computed was less than the 
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entropy of the transformation and seemed to achieve its limit at a greatly 
reduced rate. The fact that we captured almost all the entropy of the 
H6non attractor with a two-element vertical partition was "lucky." There 
are, however, a large number of "unlucky" partitions. 

There are two points which must be made concerning the computa- 
tions reported here. In order to compute the characteristic exponent of a 
dynamical system it is necessary to iterate the transformation and perform 
a minimal amount of tabulation. On the other hand, computing the 
measure-theoretic entropy for a given partition is a much larger task. 
Suppose we want to retain all configurations of length 20 and to iterate 
until the frequency of occurrence of each configuration has converged to its 
asymptotic value. Our computation suggests that for a two-element parti- 
tion there are more than 20,000 such configurations. To ensure that each 
configuration has achieved its asymptotic frequency of occurrence our 
experiments suggest that the number of iterations required will be of the 
order of 100 times the number of configurations. If we extrapolate these 
empirical observations to a partition having eight elements, assuming the 
same asymptotic growth rate for new configurations as for two-element 
partitions, then we would expect about 8 • 1012 configurations of length 20. 

If we now assume that we must iterate T 100 times in order for each 
configuration to achieve its asymptotic frequency of occurrence, then we 
need on the order of 1015 iterations of T. If each iteration requires 10 -6 see, 
then the total task would require about 109 sec or 104 days with current 
computing power. 

In view of the impracticability of computations of this size, there are 
some mathematical questions which need to be addressed. Among them are 
the following: Is there a more efficient method for computing the partition 
entropy than formulas (2.2) or (2.3)? Is there any way to optimize the rate 
of convergence of the partition entropy? 

Finally, the numerical results presented here are consistent with the 
conjecture of D. Ruelle, (1) but they are not definitive. I believe that if there 
were some guiding mathematical principal which would aid in choosing a 
partition, the results could be made definitively. Or if it were known for 
example that the unstable manifold of the H6non attractor was the support 
of a smooth invariant measure, then the recent work of P. Walters [15] 
would allow us to conclude that Ruelle's question has an affirmative 
answer. 
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